The LEAPSIG Sigma 5-Mac 16 Cross-Assembler

H. C. Wilck

Communications Systems Research Section

A cross-assembler, called LEAPSIG, has been developed to permit the Sigma 5
computer to assemble programs for the Mac 16 minicomputer. It was obtained by
translating the Mac 16 assembler into a Sigma 5 program by means of Sigma 5
METASYMBOL “procedures.” This article describes the LEAPSIG program and
discusses the method by which it was generated. Information for using LEAPSIG

on the Sigma 5 is also given.

I. Introduction

LEAPSIG runs on the Sigma 5 computer and is used
to assemble software for the Mac 16 minicomputer. This
cross-assembler accepts standard LEAP 8 (Lockheed
Mac 16 assembler) source language as input and produces
the same object code and listing as LEAP 8. LEAPSIG is
a two-pass assembler with macro capability.

The need for this cross-assembler stems from fact that
the Mac 16 minicomputers, used by JPL in control appli-
cations, lack the peripherals, particularly a fast line printer
and card reader, necessary for efficient program prepara-
tion. Since the assembly process is typically input/output
(I/0) limited, shifting this task from the minicomputer to
a larger machine with a good set of peripherals can cut
assembly time by a factor of ten or more. A further dis-
cussion of minicomputer software support can be found
in an article by J. W. Layland (Ref. 1). The XDS Sigma 5
was chosen as a host computer because of its availability
at JPL and because it has a very flexible assembler
(METASYMBOL) which made it possible to build the
LEAPSIG program in an efficient manner.

JPL TECHNICAL REPORT 32-1526, VOL. XIH

This article primarily discusses the development of the
LEAPSIG program. In addition, operating instructions for
LEAPSIG are provided in Section IV. Some familiarity
with the Sigma 5 computer, METASYMBOL, the Mac 16
minicomputer, and LEAP 8 on part of the reader is as-
sumed. The respective manufacturers’ manuals are recom-
mended as a source of additional information (Refs. 2, 3,

4, and 5),

Il. The Method Used to Implement LEAPSIG

The most direct method to obtain a cross-assembler on
the Sigma 5 would be to write it completely in Sigma 5
assembly language. This approach demands a large
amount of programmer time.

An alternative technique that requires less programming
work is to develop a set of procedures (macro definitions)
which allow Sigma 5 METASYMBOL to assemble pro-
grams written in a modified version of the minicomputer
assembly language. A second program must also be pro-
vided to translate the resultant Sigma 5 load modules into

177



the format required by the minicomputer loader. This
method has been used by C. C. Klimasauskas and
D. E. Erickson to assemble programs for the XDS 930
and the PDP 11 on the Sigma 5 (Refs. 6 and 7). This proc-
ess requires an input source language compatible in syntax
and format with METASYMBOL. Since, in general, mini-
computer languages do not meet this requirement, each
minicomputer program to be assembled by this method
must be written in a special METASYMBOL-compatible
language.

A different approach, the translation of the Mac 16
LEAP 8 assembler into a Sigma 5 program, has been
chosen for the implementation of LEAPSIG. This trans-
lation was accomplished in several steps. First the LEAP 8
assembler source program, written in a subset of the
LEAP 8 language itself, was modified to make it syntac-
tically compatible with METASYMBOL. Next a set of
procedures was written to define the operation codes
contained in the LEAP 8 source to the METASYMBOL
assembler. Then the METASYMBOL assembler was used
to translate the LEAP 8 assembler source program accord-
ing to those procedures into a Sigma 5 machine language
program. This program, augmented by a set of short
I/0 routines written in METASYMBOL, constitutes the
LEAPSIG cross-assembler.

It is important to note that only the LEAP 8 assembler
itself is translated by METASYMBOL procedures. The
result of this translation is LEAPSIG. Assembly of other
Mac 16 programs by means of LEAPSIG is not done by
these procedures. LEAPSIG, in its object form, is a Sigma 5
machine language program. Language compatibility prob-
lems are therefore confined to the development of LEAP-
S1G and do not affect its use.

LEAPSIG is the functional equivalent of LEAP 8.
LEAPSIG accepts standard LEAP 8 source language and
outputs the same object and listing when run on a Sigma 5
as does LEAP 8 operating in a Mac 16. Any Mac 16 pro-
gram can be assembled either by LEAPSIG on the Sigma 5
or by LEAP 8 on the Mac 16 with identical results.

I1l. The Translation Process

Some aspects of the translation process used to generate
LEAPSIG are discussed in greater detail below.

A. Preprocessing

The LEAP 8 assembler is written in a subset of the
LEAP 8 language not entirely compatible with META-
SYMBOL.. Therefore, the LEAP 8 source program had to

178

be preprocessed to make it suitable for translation by the
METASYMBOL assembler, The LEAP 8 source program
was inspected, analyzed, and modified with the aid of a
set of FORTRAN routines written for this purpose. These
routines take advantage of the fact that the LEAP 8 is
written in fixed field form. It was found that only 60% of
the LEAT 8 instructions and only half of the directives
were used in the LEAP 8 source and that there were no
instances of macros, logical operators, Boolean operators,
or floating point constants. LEAP 8 almost agrees with
METASYMBOL in the definition of source statement
fields and subfields, symbols, operators, and expressions,
at least to the extent of their actual presence in the LEAP 8
source. Usage of » for indirection and comment and
usage of = for literals is the same in both languages.
Furthermore, the only three cases of mnemonics common
to both languages, NOP, EQU, and END, also have
equivalent definitions in LEAP 8 and METASYMBOL.
All of this simplifies translation and contributes signifi-
cantly to the feasibility of this technique of cross-assembler
building. However, there were some compatibility prob-
lems that had to be resolved by modifying the LEAP 8
source, as outlined below:

(1) Hexadecimal constants. The symbol $ followed by a
string of hexadecimal digits (the LEAP 8 represen-
tation for hexadecimal constants) had to be changed
to a string of hexadecimal digits surrounded by
quotation marks and preceded by X.

(2) Binary scaling. All constants with binary scaling
were interpreted and replaced by their unscaled
equivalents.

(3) Character strings. It was necessary to change all
character strings into hexadecimal constants, ac-
cording to the USASCII code, since leaving their
interpretation to METASYMBOL would lead to
EBCDIC representation, which is incorrect for
LEAPSIG.

(4) Location counter references. The symbol $ had to
be substituted for » where used as reference to the
location counter.

(5) Assembler directives. A number of LEAP 8 direc-
tives for which METASYMBOL procedures cannot
be written had to be handled by source editing.
EJECT was replaced by PAGE. The conditional
assembly directives SKIPT and SKIPF were inter-
preted and then deleted together with the skipped
source lines. EXTRN, LSTSY, and TITLE were ex-
punged because their use was found unnecessary.

(6) Storing into instructions at run time. This practice
causes problems if a Mac 16 instruction being

JPL TECHNICAL REPORT 32-1526, VOL. XIl



changed at run time translates into more than one
Sigma 5 instruction or into an instruction that does
not allow the type of modification attempted.
Although any instruction can be modified or re-
placed at execution time, some are more likely
targets than others. Eight instances of run time
instruction changing were found in the LEAP 8§
program by scanning its source for labeled NOPs
and instructions of the immediate type with zero
arguments. Analysis showed that seven of these
cases would still work after translation, and the re-
maining one required rewriting a segment (12
source lines) of the LEAP 8 program.

B. The LEAP 8 Procedure Set

The LEAP 8 procedure set, which consists of 500 state-
ments, allows the METASYMBOL assembler to translate
each LEAP 8 operation code into one or more Sigma 5
instructions. Writing these procedures was greatly eased
by the fact that only those LEAP 8 operations and pseudo-
operations that actually occur in the LEAP 8 assembler
source program needed to be defined.

Two Sigma 5 registers were set aside for representing
the Mac 16 accumulator and index register. Another two
Sigma registers were assigned to the Mac 16 carry and
overflow indicators. (The other four Mac 16 status indi-
cators are never used in LEAP 8.)

Since Mac 16 is a 16-bit machine while the Sigma 5
word is 32 bits long, the procedures for data generating
directives store data words into the lower halfword with
the sign extended 16 bits to the left. Because of this dif-
ference in word length, carry and overflow do not occur
in the same manner in both machines. Therefore, pro-
cedures for arithmetic instructions must make provision
for detecting and saving Mac 16 carry and overflow and
for extending the sign of the result of the operation.

To avoid address arithmetic problems all Mac 16 in-
structions that resulted in more than one Sigma 5 instruc-
tion were translated into a branch to a separate auxiliary
program section where the actual translation was stored,
followed by a branch back to the next location in the main
section. The METASYMBOL directives CSECT and
USECT allow easy switching between two assembly
sections.

Figure 1 shows a procedure for a number of Mac 16
instructions, each of which translates into one Sigma 5
instruction.

JPL TECHNICAL REPORT 32-1526, VOL. XIiI

The procedure in Fig. 2 is an example of a Mac instruc-
tion (STL) expanding into several Sigma instructions.
Line 109 shows the branch to the auxiliary section. The
branch instruction itself is assembled into the main sec-
tion. Line 110 establishes an address for the branch back
from the auxiliary section. Line 111 switches assembly to
the auxiliary section. Lines 112 through 116 contain the
actual translation of the STL instruction. Line 117 is the
branch back to the main section. Line 118 sets the address
for the next branch to the auxiliary section and line 119
returns assembly to the main section. XTWO and XONE
on lines 114 and 115 refer to two index registers that con-
tain a 2 and a 1 respectively.

Excluding the symbol table and the I/O routines,
LEAP 8 occupies roughly 4000 words of Mac 16 storage.
Translation expands it into approximately 6000 Sigma 5
words.

C. 1/0 Routines

Five Sigma 5 routines, comprising a total of 200 source
statements, have been written in METASYMBOL to
enable LEAPSIG to communicate with the outside world.
These routines replace the 1/0 programs used by LEAP 8
when running on the Mac 16.

During pass 1 of the LEAPSIG assembler the source
input routine reads the source from the input device
(usually the card reader) and translates it from EBCDIC
(the character code used by the Sigma 5) to USASCII (the
character code required by LEAPSIG). The translated
source is also saved on the RAD and later retrieved from
there for use by the second pass.

The list output routine translates the assembly listing
from USASCII to EBCDIC and outputs it on the list-
ing device.

The object output subprogram punches the Mac 16
binary object on the paper tape punch.

The device ready routine performs a check for 1/0
completion. This is necessary in order to take advantage
of the LEAP 8 1/0 buffer switching feature, designed to
speed execution.

The executive routine reads and interprets control mes-
sages that govern the execution of LEAPSIG. (See Sec-
tion IV below.)

179



IV. Using LEAPSIG on the Sigma 5

The I/0 routines used by this assembler require assign-
ments for the following logical devices:

F:CTL Control input device (usually assigned to the

card reader).

F:CRD Source input device (usually assigned to the

card reader).

F:PRT Listing output (usually assigned to the line

printer).

F:PCH Object output (usually assigned to the paper

tape punch).

F:RAD Scratch file (usually assigned to the RAD).

The execution of the LEAPSIG program is controlled
by special control cards. These cards must contain a / in
column 1 followed in column 2 by 0, 1, 2, 3, 4 or /. Col-
umns 3 through 80 are ignored. The meaning of these
control cards is explained below:

/0 Execute pass 1 (similar to the Mac 16 control mes-
sage ‘EX,,400°).

/1 Execute pass 2, punch object and print listing
(similar to ‘EX,,401").

/2 Execute pass 2, print listing (similar to ‘EX,,402").
/3 Execute pass 2, punch object (similar to ‘EX,,403’).

/4 Execute pass 2, print errors only (similar to
‘EX,,404).
// Exit to Monitor.
If F:CTL and F:CRD are assigned to the same device
(e.g., the card reader) the control messages must be con-
tained in the source input stream. The assembler looks for

control messages when it starts execution and after finish-
ing each pass.

180

The typical deck shown below will produce an assembly
with listing and object paper tape. It is assumed here that
the LEAPSIG program is available from the RAD.

IJOB ACCOUNT,NAME

IASSIGN F:CTL, (DEVICE CRA03)
IASSIGN F:CRD, (DEVICE CRAO03)
IASSIGN F:PRT, (DEVICE,LPB02), (VFC)
IASSIGN F:PCH, (DEVICE PPAOL), (BIN)
IASSIGN F:RAD, (FILE,SCRATCH), (OUTIN)
IRUN (LMN,LEAP,ACCOUNT)

IDATA

/0

(Source deck in LEAP 8 language)

/1

//

IFIN

V. Conclusion

The LEAPSIG cross-assembler has been extensively
used in the preparation and documentation of the Pro-
grammed Oscillator software.

The relatively small programming effort required for
generating LEAPSIG makes it worthwhile to investigate
the applicability of the techniques described here to other
cross-assemblers. The feasibility of this approach is
primarily governed by the amount of preprocessing in-
volved and by the expansion of assembler core size caused
by the translation,

JPL TECHNICAL REPORT 32-1526, VOL. Xill



References

1. Layland, J. W., “An Introduction to Minicomputer Software Support,” in The
Deep Space Network Progress Report, Technical Report 32-1526, Vol. VI,
pp. 84-85. Jet Propulsion Laboratory, Pasadena, Calif., Feb. 1972.

2. XDS Sigma 5 Computer Reference Manual, 90 09 59D. Xerox Data Systems,
El Segundo, Calif., Feb. 1970.

3. SYMBOL/META-SYMBOL Reference Manual for Sigma 5/7 Computers,
90 09 52C. Xerox Data Systems, El Segundo, Calif., Dec. 1969.

4. Mac 16 Computer Reference Manual, TM13010009800. Lockheed Electronics
Company, Los Angeles, Calif., Nov. 1970.

5. Mac 16 LEAP Assembler Manual, TM13013041101. Lockheed Electronics Com-
pany, Los Angeles, Calif., Dec. 1970.

6. Klimasauskas, C. C., “The X930 Program Set for Sigma 5 Assembly,” in The
Deep Space Network Progress Report, Technical Report 32-1526, Vol. VII,
pp. 86-90. Jet Propulsion Laboratory, Pasadena, Calif., Feb. 1972.

7. Erickson, D. E., “The SAPDP Program Set for Sigma 5 Assembly,” in The Deep
Space Network Progress Report, Technical Report 32-1526, Vol. VII, pp. 91-96.
Jet Propulsion Laboratory, Pasadena, Calif., Feb. 1972,

JPL TECHNICAL REPORT 32-1526, VOL. XiH 181



182

JMP
JMM
LDA
LOX
STA
STx
ANA
ARA

LF

CNAME
CNAME
CNAME
CNAME
CNAME
CNAME
CNAME
CNAME
PROC

ACUND

Qsx't6d!
XX 1AL
Artze!
XsX1327
ArX 135!
XaX 1351
ArX 4B
ArX 1491

4

GENs 1470423217 AFAL1IaNAME 2\ NAME (1) P AF 1230 AF (4

PEND

Fig. 1. Example of a procedure for one-to-one translation of
Mac 16 instructions into Sigma 5 instructions

106
107
108
109
110
1114
112
113
114
115
116
117
118
119
120
124

*

ST
LF
RR

L

CNAME

PRAC

B BB
SET 5
USECT AUXF
BOUND 4

GEN2 147253207 AFACIYIXIB2Y 0 A2 AF(2V2AF (1)

STBrA Al XTWE
LHaAY Al2 XONE

8
SET %
USECT PROG
PEND

GENZ1sTa4s3017 AFACL1IIX13D 0 A1 AR (234AF (1)
RR

Fig. 2. Example of a procedure that expands one Mac 16
instruction into several Sigma 5 instructions

JPL TECHNICAL REPORT 32-1526, VOL. XIli



